INCREMENTAL LOAD/CREATION OF DIMENSION
TABLE LOGIC AT MAYO CLINIC

In this particular document we shall be looking at the incremental load logic at Mayo
Clinic. This document is being prepared because of the following purposes.

e Data Integrator does not have a dimension creation wizard. Thus using the
transforms within the Data Integrator we need to make the required type-1 and
type-2 dimensions.

e This document will serve as a template for all new developers to populate the data
warehouse and the data mart as part of the PAMDSS project at Mayo Clinic.

e The document is attached with the required templates which shall further help in
understanding of the processes. With this document we seek to systematize the
development of history, base and the dimension tables within the project.

e Prevent some basic mistakes that developers can make while populating the
history and the dimension tables.

Note: Along with this document we shall be attaching/referring to the required atl data
flows. As part of the understanding we shall be attaching the screen shots of the required

atl and sending the required atl.

Methodology for populating the Data Warehouse

Scenario for loading the data warehouse: depending upon the project requirements a
client within the Data warehouse can have the following tables:

e Base tables

e History tables.
In this document we shall be looking at populating the History tables. The methodology
for populating the base tables is simpler and does not require special treatment.
We have history making events and non-History making events. We shall have to track
inserts, updates and deletes for both the events. The scenario can be expressed by the use

of the following matrix.

Event Insert Update Delete
History making | 1 2 3
attributes

Non-history 4 5 6
making

attributes

Also many times we have last update time stamps in the source. We shall be looking at a
specific case where we have the time stamp in the source and have to populate the target

in such a scenario.

Methodology for handling Inserts: That is in this case we shall be looking at scenarios 1
and 4.
There shall be two kinds of inserts within this scenario.

e Those records whose business key in not present in the data warehouse.

e Those history making records that have been updated. We shall generate an insert

row for each one of them.

Methodology for handling those records whose business key is not present in the
Data ware house
For this purpose we propose that you follow activities within Flow 1. In the following
diagram Flowl includes Query ID, Validation, Query_Insert, Merge and Surrogate key

generation.

£ Data Integrator Designer - [DF_IL_CAL_CODE_SQL_DB2 - Data Flow]

" Project Edit View Toos Debug Validation Window Hep

=184
=I81X

[Dw

5P 84 ¢cnmar[=

CEGY

Repasitory:

Microsoft 50L &

|@[sf oz |55 % [DO [AES

Fluw 1: This handles inserts in case of histary/non-history making events

TBL_WK_CAL_CODE(S..

Pass’ M I

| Transfon &
=) Addre
g E Case
Date_
Befect
;;; Hierar_|
ﬂ Histar:
% Key G
Hfiven

HHTE

Query_insert

Insert_Hap_0Rer query pistgry_ins..

}

d

a]

History_Pregenin...

\ m ! Undate_lap_Oper
|

¢

goen
0

Tahle_Comparisan

Delete_lap_Operat..

m|{u]
m|g e

o

Query_DELETE

@la

K

D3STB_Div_CAL

PE
g

ImEeCcPrAm OO X -2 8 =]

Map_Operafion_Upd..
D3STB_DW_CAL,

Dwateh
|)
[
_E@]: HI4J MM caL cone sqL DB DELETEASLPDATE SQL SERVER -Data Faw }\DF_IL_CAL_CODE_SQL DB2_non_historyevents - Dats FlowADF_IL_CAL_CODE_SQL_Daz-Dataf
Ready

w5tart| |88 *| boc-tooshoutok [vata ntegrator Desi.. B spcv- M. | B CABVENTALLOADAN.. |

ON

200 R 1w

Steps in the process are as following:

1.
2.

Lookup for the business key in the data warehouse table.

Validate whether the Business key is Null or not. Within the Validation transform
put the “Business key is NULL” as the custom condition.

In case Business Key is NULL then it is straight a case of an insert.

Set the Insert Time Stamp, Update Time Stamp, Effective From (History Start)
Time Stamp as today’s date [Query_Insert].

Set the Effective through(History End time stamp) as the end of time.

Note: This shall handle Insert operation for all non-history making events also.

Handling Inserts from History Making Records: for the records that are to be updated we

shall be handling separately within the updates section. However for the new row to be

inserted after the history preserving transform, we perform the following operations.

Map the Insert row as normal (discard all the other row types) through the use of
Map Transform
Merge the output with the Inserts from Flow1.

Generate a surrogate key after union operation.

Handling Updates for History Making attributes (scenario 3): In this particular case we

have the following scenario:

The Lookup value of the business key(from Query_ID) is not NULL.
We have History Start and History End Time stamps in the target table.

We know the attributes on which we propose to preserve history.

Then the combination of activities used shall be as following:

Table Comparison: this shall help determine all the required updates within the
target table. All the output rows from this transform shall be marked as ‘U’. The
following care should be taken when we use this transform:

o The Compare column should not have the Target table Load Time Stamps

and any of the primary key columns.

o The compare column should have only the history tracking attributes
from the target table.

e History Preserving transform: The History preserve transform shall have input
rows marked as ‘Update’. Within the History preserve transform we need to take
the following care:

o The history preserve columns are the same as in Table Comparison.
o If there is a row status in the target table then its Reset Status should be
changed.

e Map the update rows: this is done using the MAP transform and only marking the

Update rows output as Normal. The other row types should be discarded.

Handling Deletes: within Data Integrator we have an option for marking Deletes as
Update rows within the History Preserve transform. Our experience with the same has
not been very convincing. The alternate methodology is as following:

¢ Inthe Table Comparison, use the option Preserve deleted rows.

e Map the deleted rows using MAP transform(discard all input types except the

deletes).

e Set the last update time stamp and the History end date as today’s date.

e Set the row status as ‘delete’.

e Merge it with the update rows.
Explanation for the transform Map_Operation_Update: It is important to consider
why we need to add one last Map transform before we load the data into the target table.
For case of Normal(we converted the update rows into Normal rows) rows mark the
respective row as Update(as given in the following diagram). The reason for doing the
given step is that in case the rows are marked as normal then they shall be inserted as a
separate row in the target table. In case we have primary key constraints in the target it

shall then result in an error.

.« Data Integrator Designer - [Map_Operation - Transform Editor]

=18 x|

"] Project Edit View Tools Debug Validation Window Help =] x|
oz@|s =@ &% eca@Eae de@aen|c-=»- |82 | wsnm|cD0AET
EE SchemaIn Queny_? j Schema Out: Map_Operation_1 j
| Description | Tvg I Dizs:
E}-- Guery_2 E}-- Map_Operation_1
L@, CALCATID int i@, CALCATID
i, CAL_CAT_CD va i@, CAL_CATCD
[va [
FAGER_USE_IND int B PaGER_USE_IND
- B IDX_USE va - B IDX_USE
- f| SRC_SYSCD va - f| SRC_SYSCD
i | ETL_BATCH_CD va .| ETL_BATCH_CD
E REC_CREATE_TS dati E REC_CREATE_TS
LB REC_UPDT_TS dat LB REC_UPDT_TS
" o Desigrer - Elog I 4] | Hle 3

sl x| Map Operation

Repository:

Microsoft_SQL_Server HRSQLS51.DI_PAM_AChaturve Input row type | Output row bype
— = niormal update
=] Address_Enhancement IACE. Address update discard
o case The Case tran: nsett d?scard
DatE_GEnEraﬁDn The Date_Gen dele discard
Ef'fecnva_DatE The Effective_
E Hierarchy_Flattening The Hierarchy

(@ Match_Merge
4

ﬂ History_Preserving The History_Pr
% Key_Generation The Key_Gene
28 Map_CDC_Operation Maps CDC dat.
E|E Map_Operation The Map_Oper

MCD. I'-"Iatcliclll
»

WEIEECIEEE

WA)Pk sERVER_SANDEOX_JE - Job }\PAMTEL_CALENDAR_CATEGORY_WF-WurkFIuw }\PAMTEL_CALENDAR_CATEGORY_DF-Data FIuw}\ME

Ready

[[g [

B)stan| | @ O] (@ * | [O] imbox -bicros.. | B mcREMENTAL ...| 5 GPas ETL SPEC... | BT Specvi-... | [@ PavssooLET... [y Data Integra... | 2[Q]D @R 1126m

Handling Updates for the Non-history making attributes (Scenario 5): Unfortunately we

cannot handle this case within the same data flow. For this we designed another data flow

whose implementation shall follow the execution of the previous data flow. In this case

we simply track the rows flagged as Updates from the Table Comparison Transform in

the following manner:

.+ Data Integrator Designer - [DF_IL_CAL_CODE_SQL_DB2_non_historyevents - Data Flow] -] ll

:l Project Edit View Tools Debug Validation Window Help |- ﬂ
p=a|sme|akeeca@a i~ JeEen|e-»-|B 2 |aes|ss=|nB0 @EE
— .x ==
.
L J
TBL_WK_CAL_CODE(S... i
F e
E |’ Query
Q) Validation I
Tahle_Comparisoen E|
GIE ;
Fail @ Map_Operation
g =k
E Query_2
- e
Map_Cperation_Upd...
: 5
o Q
Q
gDe.H aLog @
&l
2 .
Repository:
Microsoft_SQL_Server HRSQL51.01_F
Transform B
[l address_Enhancement
DlECase
Date_GEneration
E\"‘Fecﬁx-'e_Date
;;; Hierarchy_Flattening
ﬂH\stor'r‘_Preser-.'ing
%Ke‘,‘_GeneraﬁDn
%\E Map_CDC_Operation
E|E Map_Operation
@Match_Merge _Iﬂ
Bl 2l | o
_EJEJEJE - _[WD s Fiow)\DF_IL_CAL_CODE_SQL_DBZ_DELEFEASUPDATE_SQL_SERVER - Data Flow)\DF_IL_C»'-\L_CODE_SQL_DE2_n0n_hist0rve‘--'ents -Data Flow
| | [G
:ﬁstm' | @ [©] @ * | [B]mbox - Microsoft Outiock | {1 Data Integrator Desi... 8] INCREMENTAL LOADAN. . =)0 B 11:55am

In the Query_2 step we shall set the Last Update Time Stamp to today’s date.
(Note we should take the following care while implementing the above steps)

e In the Compare column category of Table Comparison include only the non-
History making attributes from the target table. Do not include the target table
load Time Stamps and the primary key columns in the Compare column category.

e In the last Map operation Map_Operation_Update set the Input Normal rows as

output type update.

Input Tables have a Last Update Time stamp: In case the input tables have a last
update time stamp then we can limit the number of rows to be scanned. This is done with

the help of the following steps:

e Generate a script before the dataflow in which you capture the Maximum value
of the Last Update Time stamp from the target table(see the marked rows in
red in the attachment below). This can be done by writing a simple script as

following:

SFULLUPLOAD="NO’;
IF ($FULLUPLOAD="YES")
begin

print("The process of full upload is set to begin');

sql('SQL_SERVER_SANDBOX', "TRUNCATE TABLE DSSTB_DW_CAL_CODE_TS");

sql('SQL_SERVER_SANDBOX','INSERT INTO
DSSTB_DW_CAL_CODE_TS(CCD_DW_ID,CCD_DW_ROW_STATUS,CCD_DW_INSERT_TS,
CCD_DW_LAST_UPD_TS,CCD_ID,CCD_CODE,CCD_DESC,CCD_SITE_CODE,CCD_STAF
F_ID,CCD_IDX_PRVDR_CODE,CCD_DFLT _REG_SECT,CCD_ACTIVE_DATE,CCD_DISAB
LED_DATE,CCD_INSERT_TS,CCD_LAST_UPD_TS,CCD_CCAT_CODE,CCD_EXTENSION_
WKS) VALUES(0,\'\',\'1900-01-01 00:00:00.000\",\'1900-01-01
00:00:00.000V',0,\'NVAV', '\ \'\,0,\'\", \'\',\'1900-01-01 00:00:00.000\',\'1900-01-01
00:00:00.000\",\'1900-01-01 00:00:00.000\",\'1900-01-01 00:00:00.000\" \'\',0)");

$Last_Timestamp_var='1900-01-01 00:00:00.000";

end
else
begin

SLast Timestamp var=SQL('SQL SERVER SANDBOX','SELECT
MAX(CCD LAST UPD TS) FROM DSSTB DW CAL CODE TS);

print(‘the process of incremental load has started');

end

Thereafter we do the following steps:
e Declare the variable as a parameter.
e Pass the parameter into the dataflow.
e In the ‘where’ clause (as given in the attachment below) select the time stamps

from the source table with values greater than the parameter value.

§is Data Integrator Designer - [Query - Query Editor] =8| x

) Project Edit View Tooks Debug Validation Window Help =8 x|
[pEa|sne|s % [eca@aR T J@AEH e w8 2 |@]dse|qan]00|@D0
— Schema ln: I DSSTE_LP_CAL_CODE j Schema Out I Query j
| Description 4] | Description | Type | =
HEEH DSSTB_LP_CAL CODE B Quey
. pccodn ..) CCOD int
..) CCD_CODE ..) CCD_CODE varcharld)
.. CCD_DESC ..) CCD_DESC varchar(30)
...} CCO_SITE CODE ...} CCO_SITE_CODE varchar()
-} CCOSTAFF_D . CCO_STAFFID int
.. CCO_IDX_PRVDR_CODE -} CCO_IDX_PRVDR_CODE varchar(f)
.. | CCO_DFLT_REG_SECT ..) CCO_DFLT_REG_SECT varchar()
. | CCO_ACTIVE_DATE - CCD_ACTIVE_DATE datetime
... b CCO_DISABLED_DATE ¥ CCO_DISABLED_DATE datetime
.. b CCOLINSERT.TS ..) CCOLINSERT TS datetime
... p CCO_LAST_URD_TS - ... | CCO_LAST_UPD_TS datetime -
L ..} F{_CCD_CCAT CODE .. CCD_CCAT CODE varcharZ)
g‘ E . ‘l b men mUTERIC AL SAIST | LlJ ‘l b mon PUTERIC ISR SR k. LlJ

2|l J)Mapping | Select N)F[om | Outer Join J)ﬂhm? |§r0upBy | Order By | Search/Replace

Repository: ’ - .
Microsot SQL._Server HRS Functions... | Propose Join I Domairs... | _I
j $LAST TIMESTAMP PAR<DSSTB LP CAL CODE.CCD LAST UED TS ﬂ

@ BLGPAS F
@ BLL

(8 BJ_IL_DEZ
(B BJIL_DB2 5
(B BJIL_SOL 5t
B BIILTS
@ BJ_Lznding_pz
@ BJ_Landing_pz
@ BJ_LandingPat

(B BJODS_APF -
L RISOIDR7 T q »
i i | M

Q@ I'?_L M RN K ODE_SQL_DEZ_non_hisb:ryevents-DataF\ow}\BJ_IL_TS-Job \WF_IL_CAL_CODE TS - Wark Flw | DF_IL_CAL_CODE_TS - Data FIDW}\Query-QueryEditor /

| T @ e
:ﬁstml | @ S @ | 3] mbox-Mirosoft Outock | (3 Data Integrator Desi..] NCREVENTALLOADA... |) Untted -Notepd | 208 G 2w

Dimension Tables: In this case we shall look at both Type-1 and Type-2 dimension
tables.
How to work with Type-1 Dimension tables: In this case we wish to carry out the
following steps:
e In case of an update keep the latest record. Do not increment the dimension key.
e However in case of an insert we wish to increment the dimension key.

We carry the above using the following steps:

§s Data Integrator Designer - [DF D SIVE - Data Fow] -8 %

"] Proect Edt View Toos Debug Validation Window Help |8]x
|ne@|sze|s/%eon@ER JRRUH 6w B 2|87 4q 00 AEE
=l A=
— 0
»
TBL_WK_3EC_LOC(E0.. r?
= 2
q Query M
I » i
Table_Comparisen ,
Vlap_Onerafion_upd.. TBL_p_SITE(SOL 3e..
[T =
2 4» |
& <
Ilap_Operation_ins.. Q
o Key_Generation ~ TBL_D_SITEISQL Se.. U
N IR mm 0
g g \ Tﬁ’ I L; g
—— ; Q)
2214 .
Repasit
Mirose
o

%4 | _|J

HIAL MM o 11 AL CODE SQL D82 -DataFlow }..DF_D_SI'IE-DataFIm\‘ /

= | T Er e
M | @193 ” | [B]box-oesto.. |EAdobeReader-[ﬁu...|) INREVENTALLOA... ||Q, Data Integrator... & |Smaout-Yahoa!M... || O] @) (Rl msepy

The logic: the logic for the above data flow is as following.

From the source tables we shall get records marked as Insert(new records) and
updates(old records changed). In case the record is an update then load it directly onto the
target table. This is done by passing it through a map transform(the output type for the
Update being ‘Update’ with other rows types being ‘discarded’) .However in case it is an
insert, then we generate the surrogate key.

Methodology for populating type-2 Dimension Tables: The methodology for populating
the type-2 dimension tables is the same as populating the history tables with history

making attributes. The sequence of operation and the logic are as following:

B e o b1, esTATON Dol sl
") Project Edit View Tools Debug Validation Window Help =181x
jpea|s=e|a%eenEa~ Jeagh|c-» @2 as%s00/@E0

TBL_WK_GPATB_RESE..

WMap_Operation Key_Generation TBL O RESERVATION...
EII} Query Table_Comparison b E - u m;; - =
Q] =] 1 P Ec
W ﬁ] Histary_Presetvin.. 4l
gy

Map_Operation_Upd..
g TBL_D_RESERVATION...

b @3 m
PE
4l

mig

YaEAED

=l

IDECPARAIDEX IS =]

Repository:
Microsoft_SQL_Server.HF
=l
FUNC_CODE(SOL,
FUNC_CODE(SQL,
HOUR{SQL_Serve
PATIENT(SQL S
REP_LOC(SQL_Se
REP_LOC(SQL_Se
RESERVATION(SC
RESERVATION(S(
SITE{SQL_Server_
SITE{SGL_Server_

hppT rvmngrilj =
4 1 L (| 3
EJQJEJ@ M4 riMI\B1 GPAS D - Job)\\"JF_D_RESERVA‘I‘ION-WorkFIow)\DF_D_RESER*;‘A‘I‘ION-Data Flow[

et | -
zﬁstartl | @ [S] @ 7 |] mbox - Microsoft Outiook ||£}. Data Integrator Desi.. 8] INCREMENTAL LOADAN... | &1 The Indian Bxpress -re... | DD R 12:35mM

